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Abstract—A new discrete second order sliding mode control
for the single input single output systems is proposed in this
paper. The control law is based on an input-output model.
The new control strategy is designed in order to reduce the
chattering phenomenon that appears in classical sliding mode
control. A numerical simulation example is presented to illustrate
the effectiveness of the proposed control. The obtained results
shows good performances in term of elimination of chattering
phenomenon.

I. INTRODUCTION

The sliding mode control (SMC) has been widely used in
literature. This success is due to its simplicity and robustness
against external disturbances and uncertainties [11], [16], [17].
The sliding mode control consists in two steps. The first step
is to design a sliding surface along which the process can slide
to find its desired final value. The second step is to develop
a control law in such away that any state outside the sliding
surface is forced to reach the desired sliding manifold in finite
time and stay on it.
The evolution of the representative point motion to the origin,
assumed to be the equilibrium point, is performed in two
phases. The first is called the reachability phase during which
the representative point starting from any initial point, reaches
the sliding surface in a finite time. The second phase is the
sliding mode. In this phase, the representative point slides on
the sliding surface until reaching the origin (equilibrium point).
Discrete sliding mode controller have been developed mainly
using state-space models [1], [5], [7], [8], [12]–[14]. Recently,
the use of input-output models in the design of discrete sliding
mode control has received some attention [2], [3], [6], [9],
[10], [18].
The first work based on input-output model are developed
by Pieper and Goheen [15]. Furuta [6] proposed an adaptive
control law for the systems with unknown parameters using an
input-output model. The work of Pieper, Goheen and Furuta
does not include disturbances. Chan [2] suggested a simple
discrete sliding mode tracking controller for the systems with
model uncertainty and disturbance. Later, Chan [3] formulated
a discrete adaptive sliding mode tracking control of a dynam-
ical system with input-output representation in the presence
of a bounded disturbance. A robust adaptive quasi-sliding
mode controller for a much more general class of discrete
input-output systems with unknown parameters, unmodeled

dynamics and bounded disturbances is proposed in [18]. In [4],
Chen developed a robust adaptive sliding mode controller for
the multi-input multi-output systems with unknown parameters
and disturbances. A control laws based on the combination of
sliding mode control and repetitive control are developed in
[5] to multivariable systems modeled with input-output model.
In spite of the robustness of the sliding mode control against
external disturbances and uncertainties, it has a drawback such
as the chattering phenomenon caused by the discontinuous part
of the control law [11], [14], [17]. To reduce this phenomenon,
many solutions are proposed such as second and high order
sliding mode control [12], [13], [17]. The principle of the
high order sliding mode control is to force the states to reach
the sliding surface and maintain the sliding function s and its
(r − 1) derivatives to zero such as:

s = ṡ = s̈ = · · · = s(r−1) = 0

This work proposes a new second order sliding mode control
for single-input single-output systems which is based on an
input-output model. This control law is able to reject the
disturbances and to eliminate the chattering phenomenon.

This paper is organized as follows. In section II, we develope
the classical quasi-sliding mode control (SMC). Section III
gives a simulation example using this classical SMC. Then,
we synthesis a discrete second order sliding mode control for
single input single output systems IV. Simulation results are
given in section V. Finally, a conclusion is presented.

II. DISCRETE SLIDING MODE CONTROL

Consider the single-input single-output system described by
the following model:

A(q−1)y(k) = q−1B(q−1)u(k) + d(k) (1)

where y(k), u(k) and d(k) are respectively the output, the
input and the disturbance. A(q−1) and B(q−1) are two poly-
nomials in the unit-delay operator q−1 defined as :{

A
(
q−1

)
= 1 + a1q

−1 + · · ·+ anA
q−nA

B
(
q−1

)
= b0 + b1q

−1 + · · ·+ bnBq−nB

It assumed that b0 is a non-zero constant and the disturbance
d(k) is assumed to be bounded such that:

| d(k)− d(k − 1) |≤ ε < ∞ ∀ k (2)
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The sliding surface is given by the following expression [2],
[3], [6], [18]:

S(k) = C(q−1)(y(k)− r(k)) = C(q−1)e(k) = 0 (3)

where r(k) is the reference input and C(q−1) is a stable
polynomial defined as:

C(q−1) = 1 + c1q
−1 + ... + cnC q−nC

Consider F (q−1) and G(q−1) the two polynomials solution
of the diophantine polynomial equation:

C
(
q−1

)
= A

(
q−1

)
E

(
q−1

)
F

(
q−1

)
+ q−1G

(
q−1

)
(4)

where 



F
(
q−1

)
= 1

G
(
q−1

)
= g0 + g1q

−1 + · · ·+ gnG
q−nG

nG = sup(nc − 1, nA)
E

(
q−1

)
= 1− q−1

The sliding mode control law is given by:

u(k) = ueq(k) + udis(k) (5)

where ueq(k) is the equivalent control law that is obtained for:

S (k + 1) = S (k) = 0 (6)

The sliding function at the instant k + 1 can be calculated as:

S (k + 1) = C
(
q−1

)
(y (k + 1)− r (k + 1))

= C
(
q−1

) [
A

(
q−1

)]−1
[

q−1B
(
q−1

)
u (k + 1)

+d (k + 1)

]

−C
(
q−1

)
r (k + 1)

By using the equation (4) and without the external distur-
bances, the sliding function S(k + 1) becomes:

S (k + 1) =[
A

(
q−1

)
E

(
q−1

)
+ q−1G

(
q−1

)] [
A

(
q−1

)]−1
B

(
q−1

)
u (k)

−C
(
q−1

)
r (k + 1)

= E
(
q−1

)
B

(
q−1

)
u (k) +

[
A

(
q−1

)]−1

G
(
q−1

)
B

(
q−1

)
u (k − 1)− C

(
q−1

)
r (k + 1)

By using the equation (1), the sliding function S(k + 1) can
be written as:

S (k + 1) = B
(
q−1

)
E

(
q−1

)
u (k) + G

(
q−1

)
y (k)

−C
(
q−1

)
r (k + 1)

Then, the equivalent control law is given by:

ueq (k) =
[
B

(
q−1

)
E

(
q−1

)]−1
[ −G

(
q−1

)
y (k)

+C
(
q−1

)
r (k + 1)

]

(7)
The robustness is ensured by addition of a discontinuous term
udis(k) such as:

udis (k) = −M sign (S (k)) (8)

where sign is the signum function defined as:

sign (S (k)) =
{ −1 if S (k) < 0

1 if S (k) > 0

III. SIMULATION EXAMPLE

Consider the single-input single-output system described as
follows:

A(q−1)y(k) = q−1B(q−1)u(k) + d(k)

with {
A

(
q−1

)
= 1− q−1 + 0.24q−2

B
(
q−1

)
= 1− 0.5 q−1

The polynomial C(q−1) is chosen as:

C
(
q−1

)
= 1− 0.8 q−1

The synthesis parameters are chosen as:

M = 0.1, Te = 0.01

The reference input is chosen as:

r (k) = 2

A. Case 1: without external disturbances d(k) = 0
The simulation results of classical sliding mode control are

shown in figures 1, 2 and 3. Figure 1 shows the evolution
of the output y(k) and the desired reference trajectory r(k),
figure 2 shows the evolution of the controller u(k) and figure
3 shows the evolution of the sliding surface S(k).
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Fig. 1. Evolution of the output y(k) and the desired reference
trajectory r(k) DSMC without external disturbances
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Fig. 2. Evolution of control input u(k) DSMC without external
disturbances
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Fig. 3. Evolution of the sliding function S(k) DSMC without external
disturbances

It can be seen that the classical sliding mode control (SMC)
can not remove the chattering phenomenon.

B. Case 2: with external disturbances

In this case the disturbance is chosen as:

d (k) = 0.5 if k > 100

The evolution of disturbances d(k) is given in figure 4.
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Fig. 4. Evolution of the disturbances d(k)

The simulation results of classical sliding mode control are
shown in figures 5, 6 and 7. Figure 5 present the evolution
of the output y(k) and the desired reference trajectory r(k),
figure 6 illustrate the evolution of the controller u(k) and
figure 7 shows the evolution of the sliding surface S(k).
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Fig. 5. Evolution of the output y(k) and the desired reference
trajectory r(k) DSMC without external disturbances
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Fig. 6. Evolution of control input u(k) DSMC without external
disturbances
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Fig. 7. Evolution of the sliding function S(k) DSMC without external
disturbances

It can be seen that the classical sliding mode control is able
to remove the external disturbances but it can not eliminate
the chattering phenomenon.

IV. DISRETE SECOND ORDER SLIDING MODE CONTROL

The main drawback of the discrete sliding mode control is
the chattering phenomenon caused by the discontinuous term.
In order to overcome this problem, we propose a new the
discrete second order sliding mode control for single-input
single-output systems with input-output model (2-DSMC).
Consider the system defined by the equation (1).
To obtain a discrete second order sliding mode control, the
sliding function must verify the two following conditions:

{
S (k + 1) = 0
S (k) = 0 (9)

So, we consider a new system whose variables are S (k + 1)
and S (k).
In the case of second order sliding mode control, the sliding
function is selected as follows [5], [13]:

σ (k) = S (k) + β S (k − 1) (10)

where{
S (k) = C

(
q−1

)
(y (k)− r (k)) = C

(
q−1

)
e (k)

0 < β < 1

The equivalent control law that ensures ideal sliding mode is
deduced from the following equation:

σ (k + 1) = σ (k) = 0 (11)
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We have
S (k + 1) = B

(
q−1

)
E

(
q−1

)
u (k) + G

(
q−1

)
y (k)

−C
(
q−1

)
r (k + 1)

Then, σ (k + 1) can be written as:

σ (k + 1) = S (k + 1) + βS (k)
= B

(
q−1

)
E

(
q−1

)
u (k) + G

(
q−1

)
y (k)

+E
(
q−1

)
d (k + 1)− C

(
q−1

)
r (k + 1) + βS (k)

Using this last relation and the equation (11), we can obtain
the equivalent control law as:

ueq2 (k) =
[
B

(
q−1

)
E

(
q−1

)]−1
[ −βS (k)−G

(
q−1

)
y (k)

+C
(
q−1

)
r (k + 1)

]

(12)
with G(q−1) is the solution of the diophantine polynomial
equation (4).
In the case of discrete second order mode control, the discon-
tinous term udis2(k) is defined by [13]:

udis2 (k) = udis2 (k − 1)− TeM
′ sign (σ (k)) (13)

with Te is the sampling rate.
Then, the global control law is written as:

u (k) = ueq2 (k) + udis2 (k) (14)

V. SIMULATION EXAMPLE

To evaluate the robustness of the proposed control law in the
presence of disturbances, we consider the single-input single-
output system used previously (section III).
The synthesis parameters are chosen as:

M ′ = 0.1, β = 0.1, Te = 0.01

The reference input is chosen as:

r (k) = 2

A. Case 1: without external disturbances d(k) = 0
The simulation results of second order sliding mode control

scheme are shown in figures 8, 9 and 10. Figure 8 given
the evolution of the output y(k) and the desired reference
trajectory r(k). Figure 9 shows the evolution of the controller
u(k). The evolution of the sliding surface σ(k) is presented
in figure 10.
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Fig. 8. Evolution of the output y(k) and the desired reference
trajectory r(k) 2-DSMC without external disturbances
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Fig. 9. Evolution of control input u(k) 2-DSMC without external
disturbances
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Fig. 10. Evolution of the sliding function σ (k) 2-DSMC without
external disturbances

B. Case 2: with external disturbances

In this case, the system is subjected to the same disturbances
given in section III.

d (k) = 0.5 if k > 100

The simulation results of second order sliding mode control
are shown in figures 11, 12 and 13. Figure 11 shows the evo-
lution of the output y(k) and the desired reference trajectory
r(k). Figure 12 illustrate the evolution of the controller u(k).
The evolution of the sliding surface σ(k) is presented in figure
13.
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Fig. 11. Evolution of the output y(k) and the desired reference
trajectory r(k) 2-DSMC with external disturbances

PC
Typewriter
76



0 50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

k

Con
troli

npu
t u(k

)

Fig. 12. Evolution of control input u(k) 2-DSMC with external
disturbances
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Fig. 13. Evolution of the sliding function σ (k) 2-DSMC with external
disturbances

From these figures, it is clear that the oscillations
encountered in the case of the classical sliding mode control
are eliminated. Therefore, the proposed discrete second order
sliding mode control law is able to eliminate the chattering
phenomenon.

The simulation results of the second order sliding mode
control are compared with the classical sliding mode control.
The result are shown in figure 14. It can be seen that the
discrete second order sliding mode control is able to eliminate
the chattering phenomenon that appears in the classical sliding
mode control.
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Fig. 14. Evolution of the output y(k) and the desired reference
trajectory r(k)

VI. CONCLUSION

In this paper, we have proposed a new discrete second
order sliding mode control for the single-input single-output

systems in the presence of external disturbances. This control
is based on an input-output model. The key advantage of the
new discrete second order sliding mode control is its ability to
reject the disturbances and to reduce chattering phenomenon.
A comparison between the proposed discrete second order
sliding mode control and the classical sliding mode control
shows the effectiveness of the proposed control strategy.
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[11] P. Lopez and A. S. Nouri. ”Théorie élémentaire et pratique de la
commande par les régimes glissants”. Mathmatiques et applications
55, SMAI, Springer - Verlag, 2006.

[12] M. Ltaief A.S. Nouri M. Mihoub, A. Messaoud and R. B. Abdennour.
”fuzzy discontinuous term for a second order asymptotic dsmc: An
expremental validation on a chemical reactor ”. Asian Journal of
Control, 13:369–381, 2011.

[13] M. Mihoub. ”Contributions la commande numriques et l’observation
des systmes complexes en rgimes glissant”. PhD thesis, National
Engineering School of Gabes, 2010.

[14] A.S. Nouri. ”Sur les rgimes glisants continu et discrets”. PhD thesis,
National Engineering School of Sfax, 2008.

[15] J.K. Pieper and K.R Goheen. ”discrete time sliding mode control via
input-output models”. In American Control Conference, San Francisco,
California, 1993.

[16] V.I. Utkin. ”Sliding Mode in Control and Optimization”. Springer-
Verlag, Berlin, 1992.

[17] C. Vecchio. ”Sliding Mode Control: theoretical developments and
applications to uncertain mechanical systems”. PhD thesis, Universta
Degli Studi Di Pavia, 2008.

[18] T. Fukuda X. Chen and K.D. Young. ”adaptive quasi-sliding-mode
tracking control for discrete uncertain input-output systems”. IEEE
transactions on Industrial Electronics, 48:216–224, 2001.

PC
Typewriter
77


